初中毕业考试简称为“中考”,是检验初中毕业生是否达到初中毕业水平的考试。下面小编为大家带来中考数学知识点归纳总结,希望对您有所帮助!
中考数学知识点归纳总结
1、二次函数的概念
一般地,如果,那么y叫做x 的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
初中中考数学知识点梳理
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
注意:抛物线位置由决定.
(1)决定抛物线的开口方向
①开口向上.
②开口向下.
(2)决定抛物线与y轴交点的位置.
①图象与y轴交点在x轴上方.
②图象过原点.
③图象与y轴交点在x轴下方.
(3)决定抛物线对称轴的位置(对称轴:)
①同号对称轴在y轴左侧.
②对称轴是y轴.
③异号对称轴在y轴右侧.
(4)顶点坐标.
(5)决定抛物线与x轴的交点情况.、
①△>0抛物线与x轴有两个不同交点.
②△=0抛物线与x轴有的公共点(相切).
③△<0抛物线与x轴无公共点.
(6)二次函数是否具有、最小值由a判断.
①当a>0时,抛物线有最低点,函数有最小值.
②当a<0时,抛物线有点,函数有值.
(7)的符号的判定:
表达式,请代值,对应y值定正负;
对称轴,用处多,三种式子相约;
轴两侧判,左同右异中为0;
1的两侧判,左同右异中为0;
-1两侧判,左异右同中为0.
(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
(10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;
②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
③二次函数(经过原点,则。
(11)二次函数的解析式:
①一般式:(,用于已知三点。
②顶点式:,用于已知顶点坐标或最值或对称轴。
(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。
中考数学知识点重要考点
1、解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
A正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
以上就是中考数学知识点归纳总结的全部内容,望能这篇中考数学知识点归纳总结可以帮助您解决问题,能够解决大家的实际问题是非常好学习网一直努力的方向和目标。