八年级上册数学期末试卷

时间:2025-01-07  分类:总结

C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;

D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;

故选:C.

点评: 本题考查 三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

8.如图,一架长25米的梯子,斜立在一竖直的墙上,这时梯子的底部距离墙底端7分米,如果梯子的顶端下滑4分米,那么梯子的底部平滑的距离为(  )

A. 9分米 B. 15分米 C. 5分米 D. 8分米

考点: 勾股定理的应用.

分析: 在直角三角形AOC中,已知AC,OC的长度,根据勾股定理即可求AO的长度,

解答: 解:∵AC=25分米,OC=7分米,

∴AO= =24分米,

下滑4分米后得到BO=20分米,

此时,OD= =15分米,

∴CD=15﹣7=8分米.

故选D.

点评: 本题考查了勾股定理在实际生活中的应用,考查了勾股定理在直角三角形中的正确运用,本题中两次运用勾股定理是解题的关键.

二、填空题(共6小题,每小题3分,满分18分)

9.计算: = ﹣2 .

考点: 立方根.

专题: 计算题.

分析: 先变形得 = ,然后根据立方根的概念即可得到答案.

解答: 解: = =﹣2.

故答案为﹣2.

点评: 本题考查了立方根的概念:如果一个数的立方等于a,那么这个数就叫a的立方根,记作 .

10.计算:﹣a2b•2ab2= ﹣2a3b3 .

考点: 单项式乘单项式.

分析: 根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.

解答: 解:﹣a2b•2ab2=﹣2a3b3;

故答案为:﹣2a3b3.

点评: 本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.

11.计算:(a2)3÷(﹣2a2)2=  a2 .

考点: 整式的除法.

分析: 根据幂的乘方和积的乘方进行计算即可.

解答: 解:原式=a6÷4a4

= a2,

故答案为 a2.

点评: 本题考查了整式的除法,熟练掌握幂的乘方和积的乘方是解题的关键.

12.如图是学年度七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是 5 人.

考点: 扇形统计图.

专题: 计算题.

分析: 根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1 减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答.

解答: 解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,

∴参加课外兴趣小组人数的人数共有:12÷24%=50(人),

∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人).

故答案为:5.

点评: 本题考查了扇形统计图,从图中找到相关信息是解此类题 目的关键.

13.如图,△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12,AE=5,则△ABC的周长为 22 .

考点: 线段垂直平分线的性质.

分析: 由AC的垂直平分线交AC于E,交BC于D,根据垂直平分线的性质得到两组线段相等,进行线段的等量代换后结合其它已知可得答案.

解答: 解:∵DE是AC的垂直平分线,

∴AD=DC,AE=EC=5,

△ABD的周长=AB+BD+AD=12,

即AB+BD+DC=12,AB+BC=12

∴△ABC的周长为AB+BC+AE+EC=12+5+5=22.

△ABC的周长为22.

点评: 此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本的关键.

14.如图,在△ABC中,∠C=90°, ∠CA B=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为 65°。

考点: 全等三角形的判定与性质;直角三角形的性质;作图—复杂作图.

分析: 根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.

解答: 解:解法一:连接EF.

∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,

∴AF=AE;

∴△AEF是等腰三角形;

又∵分别以点E、F为圆心,大于 EF的长为半径画弧,两弧相交于点G;

∴AG是线段EF的垂直平分线,

∴AG平分∠CAB,

∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的两个锐角互余);

解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的两个锐角互余);

故答案是:65°.

点评: 本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.

三、解答题(共9小题,满分78分)

15.分解因式:3x2y+12xy2+12y3.

考点: 提公因式法与公式法的综合运用.

分析: 原式提取公因式,再利用完全平方公式分解即可.

解答: 解:原式=3y(x2+4xy+4y2)

=3y(x+2y)2.

点评: 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

16.先化简 ,再求值3a﹣2a2(3a+4),其中a=﹣2.

考点: 单项式乘多项式.

分析: 首先根据单项式与多项式相乘的法则去掉括 号,然后合并同类项,最后代入已知的数值计算即可.

解答: 解:3a﹣2a2(3a+4)

=6a3﹣12a2+9a﹣6a3﹣8a2

=﹣20a2+9a,

当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.

点评: 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项.

17.已知a2﹣b2=15,且a+b=5,求a﹣b的值.

考点: 因式分解-运用公式法.

专题: 计算题.

分析: 已知第一个等式左边利用平方差公式分解,把a+b=5代入求出a﹣b的值即可.

解答: 解:由a2﹣b2=(a+b)(a﹣b)=15,a+b=5,

得到a﹣b=3.

点评: 此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.

18.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.

考点: 全等三角形的判定与性质;等腰三角形的性质.

专题: 证明题.

分析: 根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.

解答: 证明:△ABC中,

∵AB=AC,

∴∠DBM=∠ECM,

∵M是BC的中点,

∴BM=CM,

在△BDM和△CEM中,

∴△BDM≌△CEM(SAS),

∴MD=ME.

点评: 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.

19.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.

(1)求∠F的度数;

若CD=2,求DF的长.

考点: 等边三角形的判定与性质;含30度角的直角三角形.

专题: 几何图形问题.

分析: (1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;

易证△EDC是等边三角形,再根据直角三角形的性质即可求解.

解答: 解:(1)∵△ABC是等边三角形,

∴∠B=60°,

∵DE∥AB,

∴∠EDC=∠B=60°,


-->> 2/3 文章未完,请继续阅读

以上就是八年级上册数学期末试卷的全部内容,望能这篇八年级上册数学期末试卷可以帮助您解决问题,能够解决大家的实际问题是非常好学习网一直努力的方向和目标。