听了陈乾坤老师教学《圆锥的体积》一课,收获很多,陈老师课前做了充分的准备,做到能自然、流畅地完成教学任务。下面我就本节课的两点成功之处,谈谈自己的看法。
一、为新知识的学习搭建合理平台。主要体现在陈老师能够运用原有知识来推动新知识的学习,让学生大胆借鉴前面学习圆柱体积公式的方法来探究圆锥体积公式。利用转化的方法,让学生从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,使新旧知识得到整合。这种借鉴的学习方法,不仅使本节课的教学变得轻松,同时有利于学生更深刻地理解和掌握这种学习策略,有利于学生的进一步学习和终身的发展。
二、注重培养学生的实践能力。这节课的重点是通过实验来探究圆锥体积公式的由来,陈老师引导学生做实验。用装满水的圆柱在空圆锥中倒的实验的圆柱和圆锥来做倒水的实验,强调只有等底等高的圆柱和圆锥存在着的倍数关系。在实验前,让学生了解实验要求,并且提出实验目的,以实验目的为主线,让学生小组合作,通过动手操作,有眼睛观察,动脑筋思考,多种感官一起参与活动,由直观到抽象,层层深入,探索出圆锥体积公式的由来,从而理解和掌握了圆锥体积的计算公式,培养了学生的观察能力、操作能力和初步的空间观念,克服了几何形体公式计算教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,是一个探索者、研究者、合作者、发现者,并且获得了富有成效的学习体验。
1、从实际出发,课始教师出示一个圆锥的蛋筒2元/个,一个圆柱的冰淇淋5元/个,要求学生猜测“哪种冰淇淋更实惠?”,这样创设学生生活中经历的情境,让学生通过难以解决实际问题,激发学生学习需要,为新课的引入,难点的突破作好了铺垫。
2、在难点的突破上,通过猜测,引处疑问,带着疑问去实验验证,通过学生通过小组合作动手操作,用空圆锥盛满水后倒入等底等高空圆柱中,总结得出“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。不仅为推导出圆锥的体积公式发挥桥梁和启智的作用,而且有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
3、在做实验时,得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后教师用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。这样有利于培养学生学习研究的严谨性和思维的严密性。
1、分组实验过程,组长汇报时已经很正确了,其余同学也理解了,教师没必要再去重复。
2、教师在做实验时,可以垫一张凳子在桌上,把容器放高一点,这样可以避免很多学生看不清。
圆锥的体积的评课稿7
《圆锥的体积》是数学课程标准中“空间与图形”领域内容的一部分。本节课主要任务是探索圆锥体积的计算公式。学生在已掌握了圆锥的特征和圆柱的体积公式的基础上进行学习的。
学生已经具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。
本节课的成功之处:
1、能围绕本节课的教学内容有目的、有针对性地进行复习,为后面圆锥体体积的计算埋下伏笔。例如:本课利用课件出示圆柱的图形。提问:这是什么图形?圆柱的体积怎样求?学生回答:圆柱的体积=底面积×高(V=Sh)教师巧妙的出示与圆柱等底等高的圆锥(底面和高都出现)。提问:这是什么图形?导入:圆柱的体积会求了。今天我们就来研究圆锥的体积好吗?为圆柱与圆锥等底等高做好伏笔。
2、在教学过程中教师注重让学生在具体情景中,经历观察、操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆锥的体积公式。在此过程中,教师注重了对学生的引导。并能运用圆锥的体积公式解决一些简单的实际问题。
通过演示、观察、验证先比较圆柱和圆锥等底等高的体积关系。比较这个圆柱和圆锥,谁的体积大,谁的体积小?你是怎么想的?它们等底等高,圆锥上面是尖的,所以体积小,圆柱的体积大。从而引导:那么,底面积×高是不是圆锥的体积呢?通过想象、猜测:这个圆柱和圆锥有什么特点?(等底等高)观察:三角形的面积是长方形面积的二分之一提问:那么圆锥体积有可能是圆柱体积的几分之几呢?1/2或1/3。最终通过实验验证,经历研究问题的过程,做完实验,得出的结论,圆柱和圆锥的体积在等底等高的条件下V=1/3Sh。教师又引导学生小组做实验。不是等底等高的圆柱与圆锥的关系,从而进一步证实:圆柱和圆锥是等底等高的,圆柱的体积是与它等底等高的圆锥体积的3倍,或圆锥体积是与它等底等高的圆柱体积的1/3。板书:V=1/3Sh。
3、通过观察学生表情的变化、回答问题、练习、测试、动手操作的准确性等信息反馈,可获知学生对新知识新技能的掌握比较扎实。从他们身上可以看出教学任务完成的比较好。
教学建议:
在让学生利用教具进行验证时,只要多给学生时间,特别是合作的时间,学生不仅可以探索出等底等高圆柱和圆锥的体积关系,而且根据已的知识经验还完全可以自己推导出公式。在这一环节,教师放手程度不够。
圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。
以上就是《圆锥的体积》评课稿的全部内容,望能这篇《圆锥的体积》评课稿可以帮助您解决问题,能够解决大家的实际问题是非常好学习网一直努力的方向和目标。