最新高考数学复习计划,最新高考数学复习计划及方法

时间:2023-03-19  分类:计划

2。注意知识的交叉点和结合点

数学知识之间存在纵向和横向的有机联系,这些联系的交叉点和结合点往往是高考命题的“热点”,同时也可能是教师平时教学的“弱点”。因此,在复习中要注意知识的交叉点。例如,函数和不等式,函数与导数,函数与方程,函数与数列;又如,三角函数与数列,三角函数与立体几何;再如,平面向量与函数,平面向量与解析几何,平面向量与物理等等。教师在复习时要有意识地评讲一些此类试题,让学生积累解此类题的方法与经验。

㈢注重高考试题的新特点

⒈增加对个性品质的要求

《考试大纲》在20__年《考试说明》知识要求,能力要求的基础上,增加了对“个性品质”的考查要求。主要指考生个体的情感态度、

和价值观,要求具有一定的数学视野,试题融知识、方法、思想、能力于一体,注重展现数学的科学价值和人文价值。

⒉突出对主干知识的把握

20__年高考数学试题突出了高中数学重点内容和主干知识的考查。代数中的函数、数列、不等式、三角基本变换;立体几何,解析几何,新课程增加内容中的向量、概率以及概率与统计、导数等在近几年高考数学试卷中始终作为重要的考查对象,保持较高比例,而且也达到必要的深度,成为试题的主体。这些数学的重点内容和主干知识在20__年高考试卷中比例高达85。3%,20__年高考数学必然有所沿袭。

《考试大纲》对知识的要求由低到高分为三个层次,且高一级的层面要求包含低一级的层次要求。考生必须对每个层次的知识要求十分明了,还必须对每个知识点属于哪个层次的要求清清楚楚,以增加最后一段复习的针对性。注重学科知识的内在联系和知识的综合。

⒊以能力立意作为命题指导思想

《考试大纲》对能力方面的考查,全面考查思维能力、运算能力、空间想象力、实践能力和创新意识。强调探究性、综合性和开放性,

注重通性通法,淡化特殊技巧。运算能力是思维能力和运算技能的结合,它不仅包括数的式的运算,特别是要考查以含字母的式的运算为主,兼顾对算理和逻辑推理的考查。要提高解答数学问题的运算效率,要能够以图助算,通过识图和绘制草图,列出表格

⒋强化数学思想和数学方法

《考试大纲》引导强化数学思想方法的复习,营造自主探究环境。数学思想和方法的考查分三个层面:首先是具体方法的考查,如配方法、换元法、消去法、割补法、待定系数法、数学归纳法(理工类要求);然后是一般的逻辑方法,如分析法、综合法、类比法、归纳法、演绎法、反证法等;最高层次是数学思想,如函数与方程思想,数形结合思想,分类讨论思想,转换与化归思想,运动与变换思想等。

⒌注重理性思维的考查

《考试大纲》倡导理性思维,以甄别数学素养。要注意培养空间想象、直觉猜想,归纳抽象,符号表达,运算推理,演绎证明和模式构

建等进行思考判断,形成和发展理性思维能力。

⒍突出考查实践能力增加应用型和能力型的试题。

基于以上认识,在《考试大纲》指导下,建议做好“五抓”:

1、抓学习。抓对《考试大纲》的学习。当学生也能够按《考试大纲》的精神来复习时,复习才会是高效的。

2、抓基础。在复习中一定要巩固和掌握基础知识,基本技能,基本思想和方法。

3、抓训练。精选习题(选题原则是具有新颖性、灵活性、综合性、代表性、发展性),强化思维训练,提高探索创新能力。

4、抓落实。不怕难题不得分,就怕每题都被扣分。

5、抓反思。要抓好审题的反思、思维定势的反思。解题后的反思,充分挖掘每道习题的智力价值,变盲目性为自觉性。

㈣关注新课程的新重点

对比新老两种数学课本的教学内容,不难看出简易逻辑、平面向量、线性规划、空间向量、简单几何体中的正多面体、

概率与统计、极限、导数均为新内容 由20__年试卷不难看出,这部分内容已占有一定的分值。因此,要重视此类题目的复习。

值得一提的是,从20__年高考试题中不难分析出,函数、不等式、平面向量、圆锥曲线、概率统计、直线、平面、简单几何体、数列极限和导数正在成为高考的新重点。复习中应将这些内容作为载体,将常见的数学解题通法(配方法、待定系数法、归纳法、换元法、代入法和特值法、数形结合法)和数学思想法(数形结合思想方法及逻辑划分与归纳、函数与方程、变换与转化等思想方法)融会贯通地应用于解题过程中,形成熟练的解题思路和规范的书面表达能力。

总之,教师在复习时一定要了解新课程、新高考的新重点,掌握科学的复习方法,在全面复习的基础上,抓住重点,有效复习,提升学生的答题能力和得分能力。

最新高考数学复习计划及方法(精选篇5)

高考数学复习通常要分三轮完成,第一轮复习的目的是将我们学过的基础知识梳理和归纳,在这个过程当中主要以两个方面作为参考。第一个是以教材为基本内容,第二个以教学大纲以及当年的考试说明,作为我们参考的依据,然后做到尽量不遗漏知识,因为这也是作为我们二轮三轮复习的基础。

对于高三数学第二轮复习来说,要达到三个目的:一是从全面基础复习转入重点复习,对各重点、难点进行提炼和把握;二是将第一轮复习过的基础知识运用到实战考题中去,将已经把握的知识转化为实际解题能力;三是要把握各题型的特点和规律,把握解题方法,初步形成应试技巧。

高三数学第二轮的复习,是在第一轮复习的基础上,对高考知识点进行巩固和强化,是考生数学能力和学习成绩大幅度提高的关键阶段,我们此阶段的复习指导思想是:巩固、完善、综合、提高。就大多数同学而言,巩固,即巩固第一轮单元复习的成果,把巩固三基(基础知识、基本方法、基本技能)放在首位,强化知识的系统与记忆;完善,就是通过此轮复习,查漏补缺,进一步建立数学思想、知识规律、方法运用等体系并不断总结完善;综合,就是在课堂做题与课外训练上,减少单一知识点的试题,增强知识点之间的衔接,增强试题的综合性和灵活性;提高,就是进一步培养和提高对数学问题的阅读与概括能力、分析问题和解决问题的能力。因此,高三数学第二轮的复习,对于课堂听讲并适当作笔记,课外训练、自主领悟并总结等都有较高要求,有“二轮看水平”的说法,是最“实际”的一个阶段。

在高考一轮复习即将结束、回顾前一阶段的复习,基本是按照本学期的教学计划进行,整个过程中注重学生的三基复习,特别是学案的设计利用,为学生提供很大方便,既注重学习效果,又少走弯路,对学生的复习起到很好的作用,引导学生构建知识网络,提高学生的基本技能,效果显著;但是教学过程中还存在不少问题:在学案的选题和设计中有个别题目的难度把握不合适,量有时过大,对于个别题型的解题方法总结归纳不到位,学生对有些知识的落实不到位,教师对学生要求不是很严,标准不高,致使有的学生懒惰不能及时完成作业,课堂教学中老师有时讲的过多,学生参与的较少,不能体现学生的主体地位,影响学生成绩的提高等诸多问题,这些问题在二轮复习中要逐步解决,二轮复习即将开始这样一个承上启下的阶段,时间紧,任务重,复习时间有两个月,在四下旬结束。

二轮复习要注意以下几个方面的问题:

一、构建知识网络,高考试题的设计,重视数学知识的综合和知识的内在联系,尤其重视在知识网络的交会点设计试题。而一轮复习结束后,知识点在我们的意识形态中还是孤立的,二轮复习的过程,是对数学基础知识和基本方法不断深化的过程,要从本质上认识和理解数学知识之间的联系,从而加以分类、归纳、综合,形成一个条理化、排列有序、知识之间关系清晰的知识结构系统。这样在解题时,就可根据题目提供的信息,提取相关的知识点,进行有机组合,探索解题的思路和方法。如函数、导数、方程和不等式以及数列在解决问题时经常相互转化;再如解析几何中曲线与方程和代数中的函数与图像之间的联系;解析几何与向量,解析几何与导数等。因此,只有搞清楚知识之间的内在联系,形成知识结构和网络,在解题时才能从不同角度去分析解决,才能对知识融会贯通,运用自如。要求师学生把握高中数学“七大块知识、四大数学思想”。

(1)函数与导数(及其应用);(2)不等式(解法、证明及应用,这部分不会单独命题,常以工具形式出现在问题中如求范围,比较大小等);(3)数列(及其应用);(4)三角函数(图象、性质及变换);(5)直线与平面及简单几何体(空间三种角、七种距离(点面、异面直线之间距离为常考)、面积与体积的计算);(6)直线与圆锥曲线;(7)概率与统计(理科中期望与方差及正态分布估计)。

要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。要在老师的引导下,对下列主要专题进行复习与训练,巩固并提高。

首先,先对选择题和填空题常用的解题方法和一些解题技巧进行复习,以便学生在后面的复习中进行应用,使之在做这类题时达到熟练、快捷、准确。

(一)函数与不等式是重点。在代数中,以函数为主干,不等式与函数的综合是热点。

(1)函数的性质,如单调性、奇偶性、周期性、对称性等,多以具体函数及图象的几何直观展开,要注重考查抽象函数的问题,解答题重点考察导数的应用,特别是对数函数近来出现的频率很高,在复习中要隐去足够的重视,同时也要关注指数函数和三角函数的相关题型。

(2)一元二次函数,则是重中之重,函数值域(最值),以及转化为二次函数的值域,特别是含参变量的二次函数值域的研讨为重点;方法以突出配方法、换元法和基本不等式法为重点,二次不等式解的讨论,二次曲线交点问题等都与此相关。

(3)对于不等式证明,与函数联系的、与数列综合的是重点,在掌握比较法和基本不等式法的基础上,近两年不等式在导数的综合题中有所加强,即借助于函数的单调性和最值来证明不等式,掌握几种简单的放和缩的'技巧是必要的。

(二)数列,以递推关系式为条件考查数列的通项、求和、应用与极限等为重点。应突出基本数列的思想和转换与化归的方法,重点是依据递推关系式研究数列的题型,注重归纳解题方法和手段,注意变式教学,即变换条件引导培养的分析问题解决问题的能力。

(三)三角函数的考查,高考考察重点是三角函数的图像和性质,在三角形中三角函数问题,考题多为解答题中第一题位置,属于中档容易题,训练中重视研究函数性质的题目;小题中在 “求值”,抓好基本公式的熟练运用,以及二划一公式的应用,落实三角函数的性质,解三角形的问题。


-->> 3/5 文章未完,请继续阅读

以上就是最新高考数学复习计划,最新高考数学复习计划及方法的全部内容,望能这篇最新高考数学复习计划,最新高考数学复习计划及方法可以帮助您解决问题,能够解决大家的实际问题是非常好学习网一直努力的方向和目标。