②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。
【考察内容】
①中心对称和中心对称图形的性质
②旋转和平移的性质。
(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。
【考察内容】
①圆的有关性质的应用。垂径定理是重点。
②直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算
④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
【考察内容】
①简答事件的概率求解,图表法和数形图法
②利用概率解决实际,公平性问题等
③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
初三下册
反比例函数、相似、锐角三角函数和投影与视图。
(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。
【考察内容】
①会画反比例函数的图像,掌握基本性质。
②能根据条件确定反比例函数的表达式。
③能用反比例函数解决实际问题。
(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
【考察内容】
①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
(3)锐角三角函数
(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。
【考察内容】
①常见几何体的三视图
②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。
③利用相似结合平行投影和中心投影解决实际问题。
(不同地区分值不同,可供参考)
选择题:3分一个,共14个,总分42分。
填空题:3分一个,共5个,总分15分。
解答题:共7题,总分63分。
(一)线段、角的计算与证明问题
中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。
(二)列方程(组)解决应用问题
在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。
(三)阅读理解问题
阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。
(四)多种函数交叉综合问题
初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。
(五)动态几何
从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。
(六)图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。
初三数学知识点复习
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;
(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。
k≠0
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质:
y=k/x(k≠0)的变形形式为xy=k(常数)所以:
(1)其图象的位置是:
当k﹥0时,x、y同号,图象在第一、三象限;
当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;
当k﹤0时,在每个象限内,y随x的增大而增大;
初三数学知识点归纳
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
=b^2-4ac0时,抛物线与x轴有2个交点。
=b^2-4ac=0时,抛物线与x轴有1个交点。
=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
以上就是初三数学知识点全总结,初三数学知识点全总结人教版的全部内容,望能这篇初三数学知识点全总结,初三数学知识点全总结人教版可以帮助您解决问题,能够解决大家的实际问题是非常好学习网一直努力的方向和目标。